- mutations have been located on three cistrons. The c- Six complementation test was done between them. The results were as the following table.
- +: it mean complemented
- 0: it mean not complemented

Detect the locus of each mutation on the three cistrons and complete the following table?

I	1	2	3	4	5	6
1	0	+		+	+	+
2		0	+			+
3			0	0		
4				0		
5					0	+
6				17		0

Semester: (1^{st nd} 2008) Academic year: 2007/2008

Allowed Time: 2 hr

Postgraduate Course Microbial Genetics (602 AGN)

Answer the following questions تسلم ورقة الأسنلة داخل كراسة الإجابة Question 1: (20 marks)

- **a-** What is the title, the author and the year of publication of the books you used in your seminar?
- **b-** What are the mutation isolation methods? And the complementation methods are different from fungi and bacteria. Explain?
- **c-** What are the roles of the transcription factor, hormones and enhancer for gene regulation in Eukaryotes.
- **d-** What is the difference between complementation and recombination?

Question 2: (20 marks)

- a- How many plaques can be formed by a three phage particles?
- b- When glucose is absent, is the concentration of cyclic AMP is high or low?
- c- Name five genetic phenomena mediated by transposable elements?
- **d-** What is meants by a virulent mutant of a phage?
- e- In the Tn₃ system what enzyme is responsible for formations of cointegrate?
- f- Why can a particular phage not adsorb to any bacterial species?

Question 3: (20 marks)

- a- Write with drawing about the following:-
 - 1- Inition of replication and the bacterial origin.
 - 2- The lysogenic program.
 - 3- Phage T4, Mu and phage \(\mathref{\lambda} \)
- **b-** There are different mechanisms for regulation of gene expression in bacteria. Explain briefly <u>two</u> only of these mechanisms.

(انظر خلفه)

Semester: (1^{st nd} 2008) Academic year: 2007/2008

Allowed Time: 2 hr

Postgraduate Course Microbial Genetics (602 AGN)

Answer the following questions تسلم ورقة الأسئلة داخل كراسة الإجابة Question 1:

- **a-** What is the title, the author and the year of publication of the books you used in your seminar?
- **b-** What are the mutation isolation methods? And the complementation methods are different from fungi and bacteria. Explain?
- **c-** What are the roles of the transcription factor, hormones and enhancer for gene regulation in Eukaryotes.
- **d-** What is the difference between complementation and recombination?

Question 2: (20 marks)

- a- How many plaques can be formed by a three phage particles?
- **b-** When glucose is absent, is the concentration of cyclic AMP is high or low?
- **c-** Name five genetic phenomena mediated by transposable elements?
- d- What is meants by a virulent mutant of a phage?
- e- In the Tn₃ system what enzyme is responsible for formations of cointegrate?
- f- Why can a particular phage not adsorb to any bacterial species?

Question 3: (20 marks)

- a- Write with drawing about the following:-
 - 1- Inition of replication and the bacterial origin.
 - 2- The Iysogenic program.
 - 3- Phage T4, Mu and phage 1
- **b** There are different mechanisms for regulation of gene expression in bacteria. Explain briefly <u>two</u> only of these mechanisms.

(انظر خلفه)

- **c-** Six mutations have been located on three cistrons. The complementation test was done between them. The results were as the following table.
- +: it mean complemented
- 0: it mean not complemented

Detect the locus of each mutation on the three cistrons and complete the following table?

	1	2	3	4	5	6
1	0	+		+2111	+ + + + + + + + + + + + + + + + + + + +	+
2	Value Rev	0	+			+
3	, ighil a		0	0 110		
4				0	and the	Train and the second
5	GIL 2DPA	:25/0/255		gut errer	0	+
6	aparel mis	2 00000		nh sdr	T Tapiv	0

Good luck,,,

Semester: (January 2005) Academic year: 2004/2005 Allowed Time : 2 hours

Postgraduate Course Radiation Genetics (AGN 605)

Answer two of the following questions:

Question 1:

(20 marks)

Write a short note on three of followings:-

- a- The effect of radiation on the cytoplasm.
- b- Radiation effects on DNA.
- c- The production and the use of X-rays.
- d- The increase of the cell size under the effect of ionizing radiation.

Ouestion 2:

(20 marks)

Discuss what is meant by the target-hypothesis? And state the evidences that support this hypothesis.

Question 3:

(20 marks)

State and explain what is meant by: environment effect on the action of radiation.

Answer the following question:

Question 4:

(20 marks)

- 1- What is the effect of U.V. radiation on the DNA?
- 2- What the meaning of the following?
 - Photoreactivation
 - Single strand break

Good Luck

جامعة القاهرة كلية الزراعة قسم الوراثة

الفصل الدراسي الأول / يناير ٢٠٠٧ _ زمن الامتحان : ساعتان

العام الجامعي: ٢٠٠٧/٢٠٠٦

مرحلة البكالوريوس الامتحان النظري النهائي لمقرر وراثة حديثة (٣٠١ ورث)

المستحل السراق الشهادي المستحدد ورائد المستحدد ا	
عن الأسئلة الآتية :	جب
ل الأول :	لسؤا
تعبير الجيني المتحكم في الناتج الجيني الموجود في الخليه تتوقف علي عاملين أساسيين هما:	1 - 1
	2
لناك بعض الجينات تعرف باسم House keeping gene هذه تعمل بصفة مستمرة ومثل هذه الجينات تي تكون مسئولة عن تخليق RNA polymerase وتحدث تنظيم لناتج الجين في ثلاث مراحل هي:	a -1 11
تكون البروتين المثبط repressor من منطقتين فعالتين هما :	۱- بر
Recorded to the second of the	
, H	
تكون أوبرون اللكتوز من ثلاث جينات تركيبيه هما :	٤ - يا
ي عملية الـ (Transposable elements) يوجد ثلاث أنواع لعملية القفز هما :	٥_ ف
,	
وجد طريقتين لقطع انزيم القطع المتخصص للـ DNA	ر – ر
- لتيلومير هي منطقة طرفية من الكروموسوم بها تركيب خاص يمكنها القيام بثلاثة وظائف هي :	JI _V
عملية صرو تعبئة الـ DNAداخل الكروموسومات تمر بعدة مستويات مختلفة هي :	: _/

(٥١ درجة)

السؤال الثاني:

- (V) أمام العبارات التاليه مع تصحيح الخطأ (V) أمام العبارات التاليه مع تصحيح الخطأ ١- نقص الميلانين هو المسؤول عن حدوث مرض البول الكابتون.
- ٢- أظهرت صور الميكروسكوب الالكتروني أن خلية E. coli نحتوي علي منطقتين هما النواه (انظر خلفه) والسيتوبلازم.

- ٣- لابد من وجود نوع من الـ DNA متعدد النسخ في الجينوم وسمى Repititive DNA .
- 4- القطع المتماثل تكون النهايات لزجة sticky end بينما القطع الغير متماثل تكون النهايات حادة sticky end . end
- الكوسميدات cosmides هي عبارة عن ناقِل يجمع ما بين الفاج والبلاز ميد ويحتوي علي أطراف مفردة من الـ Cos site DNA .
- آ- في التعبير الجيني في الكاننات مميزة النواه توجد منطقة (Locus control region (LCR) هذه تنظم مواقع لازمة للتعبير الجيني لكل الجينات الموجودة على الكروموسوم بواسطة التتابعات الخاصة به.
- ٧- الـ Transacting هي تتابعات من النيو كلوثيدات تخلق في مكان وتعمل في نفس مكان تخليقها واذا انتقات مكان آخر تكون غير فعالة.

II – أذكر الفرق بين كل من في جدول (٨ درجات)

- ۱- جزى الـ DNA وجزى الـ RNA
 - ۲- الـ Exons والـ Exons
 - Splicing و الـ Splicing ا
- Enhancer ٤ المعزز و CCAAT box GC box

السوال الثالث : (١٥ درجة)

اشرح بالتفصيل الخطوات الأساسية اللأزمة لعمل الهندسة الوراثية وما هي الأنواع المختلفة لناقلات الكلونة مع ذكر انزيمات القطع المتخصصة Restriction enzymes في مجال الهندسة الوراثية - مع الرسم ان أمكن .

- ا عرف العناصر الانتقالية Transposable elements وكيف تتم خطوات تضاعف هذه العوامل الانتقالية بواسطة الادماج المشترك .
- Inborn errors of metabolism أي عيوب الايض الخلقية تم الدراسة على هذه الظاهرة التي أوضحت بعض العيوب الوراثية التي تنتج من الطفرات أشرح هذه العملية بالتفصيل مع ذكر الأمثله .
 - . اشرح بالتفصيل عملية الترجمة Translation في E.coli بالمراحل الثلاثة المختلفة مع الرسم ان أمكن.

مع التمنيات بالتوفيق ،،،

1 m (Mash

Cairo University
Faculty of Agriculture
Department of Genetics

Semester: (June 2007) Academic year: 2006/2007

Allowed Time: 2 hr

Postgraduate Course Mutation and Mutagens (604 AGN)

Answer all questions; use diagrams when necessary:

Question 1:

(15 marks)

Write brief notes on 2 points of the following:

- 1- Intragenic and intergenic mutations.
- 2- Actions of UV-light as a mutagen.
- 3- Reverse mutations.
- 4- Functionality of alkylating agents.

Question 2:

(15 marks)

- (a) Temperature is an external factor which may inhance mutation rates, Discuss briefly this factor, give examples if possible.
- (b) Outline the molecular mechanisms which may lead to gene mutations, compare between mis-sense vs. non-sense mutations.

Question 3:

(15 marks)

- (a) Mutator genes play an important role on spontaneous mutation rate, Explain this fact giving a single and a double-unit systems.
- (b) Outline a practical technique for measuring spontaneous and induced mutation rates in sex chromosomes of Drosophila.

Question 4:

(15 marks)

- (a) Discuss briefly the actions of ionizing radiations on DNA and on chromosomes leading to gene and chromosomal mutations, use diagrams to explain your answer.
- (b) What is meant by photoreactivation? Give an example for your answer.

Good luck,,,

Prof. Dr. Hashem Hussein

Academic year: 2007/2008

Allowed Time: 2 hr.

Postgraduate Genetics (AGN 601)

Answer the questions of only one group

Group I

Answer all the following questions

Question 1:

(20 Marks)

Discusses the differences between:

- a. Gene regulation in Prokaryote Vs. Eukaryote.
- b. Cloning Vs. expression vectors.
- c. Gene mutation Vs. chromosomal aberration.
- d. Genomic library Vs. cDNA library

Question 2:

(10 Marks)

- a. Describe in details the methods for recombinant gene detection at DNA, RNA and protein level
- b. Discuss the role of translation factors.

Question 3:

(15 Marks)

Design experiment to improve the salt tolerance of tomato cultivars using gene transfer and include the following items in your answer:

- a. How to prepare the expression cassette.
- b. Suitable method for gene delivery.
- c. Role of plant tissue culture.
- d. Molecular confirmation of transformation and evaluation of the transgenic plants

Question 4: (Answer only 2 items from the following) (15 Marks)

- a. Describe in details the features of Watson and Crick model of DNA structure.
- b. DNA replication and protein synthesis are polar processes, explain
- c. Compare between the following:
- DNA-dependent DNA polymerases Vs. DNA-dependent RNA polymerases.
- 2- Structure of mRNA in prokaryotes Vs. eukaryotes.

Group II

Answer all the following questions

Question 1:

(30 Marks)

- a- Define DNA nanotechnology
- b- Discuss briefly the types of DNA
- c- Mention all the cases DNA nanotechnology and discuss briefly two of them

Question II:

(30 Marks)

- a- Write short notes on the major contribution of two scientist in the field of behavioral genetics
- b- Define the term Epigenesis
- c- Mention the three methods of study in behavioral genetics
- d- Show how behavioral genetics can be used in social studies

GOOD LUCK

Examination Committee

Professor Dr. Abdel kader Gamal-Eldine

Professor Dr. Mohammed H. Soliman

Evolution Committee

Professor Dr. Hashem Hussein

NA

Semester: (January 2008) Academic year: 2007/2008 Allowed Time: 2 hours

Postgraduate course Genetical and Cytological Techniques (701)

Question 1:

(12 marks)

DNA sequencing is one of the most important techniques in molecular biology. Discuss pointing out its significance and the basic strategy used in the automated sequencing technology.

Question 2:

(18 marks)

- A) Assume you have a mixture of amino acids- outline an experiment to separate these amino acids using the technique of paper chromatography (6 marks).
- B) In your opinion what are the main differences between: (give answers to only 3 points)
 (12 marks)
 - 1- A restriction enzyme and the S1 nuclease enzyme
 - 2- The BAC and YAC vectors
 - 3- SDS-PAGE and PAGIF
 - 4- The opposition method and the liquid emulsion method for application of the photographic emulsion in autoradiography.

Question 3:

(15 marks)

- A-What are the common characteristics of the fixative compounds, Cite at least two examples for non-metallic fixatives and metallic fixatives compounds?
- B-Discuss the most valuable applications of basic chromosome research in the diagnosis of genetic disorders?

Question 4:

(15 marks)

- A)- Give a brief account on one of the following items:
 - 1-The major factors that determine the yield of anthers that can be used in anther culture 2-The mechanism of *Agrobacterium* as mediated gene delivery system into plant cells indicating, why dicotyledonous plants are more susceptible than monocotyledonous plants?
- B)- From what you have learned, explain a technique that you can use to transform and express the human alpha-1-antitrypsin gene into specific sheep tissues.

Good Luck

د. ا من الرود

Final Exam
Allowed Time: 2
Postgraduate course:
Cytologia

Answer the following questions

Question 1:

(20 grades)

- 1) Comment on the main properties of cytoplasmic matrix?
- 2) Write on the fine structure of Golgi complex?

Question 2:

(20 grades)

What are the main differences between Four the following:

- a- Spind le microtubles Ciliary microtubule.
- b- Active transport -enclosure of substances in membranous vesicles .
- c- Desmosomes gap junction
- d- Integral portions Peripheral proteins
- e- L type S type microfilaments .

Question 3:

(20 grades)

- A) How do the Light- dependent reaction proceed?
- B) How DNA and histones are organized in Chromosomes?

Good Luck

Faculty of Agriculture Cairo University Department of Genetics

Molecular Genetics Post-graduate Exam (2006-2007)

Answer all the following Questions:

Time: 2 hours

- 1- Talk about the following items:
 - a) Different mutations affecting the gene regulation of gene expression in *lac*-operon, how could we identify the dominant from recessive mutations? Give examples.
 - b) The effect of the leader region on trp-operon on its regulation.
 - c) The influence of histones on gene expression.
- 2- a) How the RNA processing control regulates the production of mature RNA molecules from precursor-RNA molecules?
 - b) Give an example for how to find a specific clone in a genomic library.
 - c) Homologous search plays an important part in assigning gene function except ORFs with no matches to database, explain.
- 3- a) Talk about the roles of chromosome walking and chromosome jumping in identifying a specific gene between flanking markers.
 - b) What is DNA fingerprinting? How could this method be used to establish parentage and in forensic science laboratories?
 - c) Many cellular functions are carried out by proteins that contact one another. Design an experiment to find genes that encode proteins that interact with a known protein.
- 4- a) What are the differences between VNTRs and STRs?
 - b) How could we use the microarray to identify SNPs?
 - c) Give examples of some products produced by biotechnology companies?

Jel) 1

Cairo University
Faculty of Agriculture
Department of Genetics

Semester: (1st 2008)

Academic year: 2007/2008

Allowed Time: 2 hr

Postgraduate Course Population Genetics (603 AGN)

Answer only 4 out of the following questions

Question 1:

(15 marks)

Define the following expressions, give hypothetical examples:

- (a) The effective breeding size of a population in the successive generations. How to calculate it in case of a different sex ratio?
- (b) The adaptive value (fitness) of genotypes in a population and its relation with the coefficient of selection (s). Give examples according to the degree of dominance between the alleles of a given gene under test.

Question 2:

(15 marks)

- (a) In the human population, the frequency of albinism is one in each 90000 individuals. Calculate:
 - 1. The number of generations required to reduce this frequency to half its value. Explain, how can we achieve this?
 - 2. The frequency of heterozygotes in the initial population.
- (b) Calculate the coefficient of inbreeding of the individual A whose ancestors appear in the following diagram. Define the meaning of this coefficient.

 $A = \begin{bmatrix} B & & & \\ & & & \\ C & & & \end{bmatrix} \begin{bmatrix} G & & & \\ & & & \\ & & & \end{bmatrix}$

- Calculate also Coefficient of relationship between B & C.

Question 3:

(15 marks)

Explain the effect of linkage between two genes on the speed to reach equilibrium in a Mendelian population. Use diagrams if possible. Compare with independent assortment (Give examples).

(انظر خلف له)

Question 4:

(15 marks)

In a sample from Giza population, the following frequencies of blood groups were surveyed:

A = 2000, B = 1600; AB = 600 and 0 = 1500.

Calculate the gene frequencies and explain if the population is in equilibrium (compare χ^2 test and Weiner coefficient).

D.F. χ^2 (tabulated) = $\frac{1}{3.84}$ $\frac{2}{5.99}$ $\frac{3}{7.81}$ $\frac{4}{9.49}$

Question 5:

(15 marks)

What are the various mechanisms that may account for polymorphisms in natural populations?

Good luck,,,

Examiner

Prof. Dr. Hashem Hussein

Semester:1st (January 2007) Academic year: 2006/2007 Allowed Time: 2 hours

Postgraduate Course Population Genetics (603 AGN)

	_
Answer all questions:	
answer all allestions:	

Question 1:

(15 Points)

- (a) Explain the simplified conditions specified for the idealized population. Diagram a large base population ($N = \omega$) subdivided into sub-populations or lines in successive generations. What are the consequences of this case?
- (b) What are the mechanisms that may account for polymorphisms in different populations? Explain each one.

Question 2:

(15 Points)

1. Define the following expressions, Give examples if possible:

(a) Fixation of a gene

- (b) Selection favouring heterozygotes.
- (c) Fitness and Dominance.
- 2. Explain the role of inbreeding on equilibrium in an idealized population.

Question 3:

(15 Points)

- (a) In the human population, the frequency of albinism is one in each 9000 individuals. Calculate:
 - 1- The number of years required to reduce this frequency to ½ its value. if generation inteval is 25 years.
 - 2- The frequency of heterozygotes in the initial population.
 - 3- How this reduction can be reached?
- (b) In a sample from a human population, the following frequencies of blood groups were surveyed:

A = 2000.

B = 1600

AB = 600

and 0 - 150

Calculate the gene frequencies and explain if the population is in equilibrium or not, if not give possible reasons.

D.F.

 χ^2 (Tabulated) =

3.84

2 5.99 3 7.81

9.49

compare χ^2 test and Weiner's coefficient.

Question 4:

(15 Points)

- (a) An initial population (F0 = 5000 individuals) exposed to random genetic drift being of the sizes: 50, 30, 150 and 300 during the successive generations; calculate the effective breeding size (Ne) and the mean rate of inbreeding (ΔF) during this process.
- (b) A population of cod-fish was left for random mating with the size of 20 pairs of parents per generation, calculate the inbreeding coefficient in this population after 5 generation.
 Good luck Examiner
 Prof. Dr.Hashem Hussein

Faculty of Agriculture Cairo University Department of Genetics

Biochemical Genetics Postgraduate Exam (2007-2008)

Answer all the following Questions:

Time: 2 hours

- 1- a) Draw a schematic representation of the organization of DNA replication and define the functions of the enzymes and proteins involved.
 - b) Talk about the role of repetitive DNA in genome organization and in preventing chromosome shortening during replication.
 - c) RNA processing is performed in eukaryotes only. Talk about the different processing mechanisms for the maturation of RNA.
- 2- a) There is a correlation between gene expression and chromatin structure, explain.
 - b) There are two main groups of chaperons, identify the function of each group and explain how ubiquitin marks protein for degradation?
 - c) In Eukaryotic organisms, there are some genes that are strictly regulated by a developmental program while others are environmentally regulated, give examples.
- 3- a) Regulation of gene expression could be affected by initiation of protein synthesis in the cytosol, give example.
 - b) Extensive DNA damage can be repaired by different mechanisms, discuss two methods of repair mechanisms.
 - c) Explain how chloroplast protein synthesis is regulated by light.
- 4- Talk in details about the followings:
 - a) Cis-acting elements within genes
 - b) Glycine betaine and osmoprotection
 - c) Impact of water deficit and salinity on transport across plant membranes.

മ്പാരാ Good luck മായാശേ